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Abstract
We study the quantal energy spectrum of triangular billiards on a spherical
surface. Group theory yields analytical results for tiling billiards while the
generic case is treated numerically. We find that the statistical properties of
the spectra do not follow the standard random matrix results and their peculiar
behaviour can be related to the corresponding classical phase-space structure.

PACS numbers: 0545, 0545P

1. Introduction

The classical dynamics in polygonal billiards (in particular equilateral triangles) on a spherical
surface was studied in [1] to investigate the effect of the positive curvature on the classical
motion. The structure of phase space for these curved triangular billiards turned out to be
regular but very complex. As a consequence of the focusing mechanism on the sphere the
phase space is entirely covered by chains of stable islands. Inside each of these islands the
motion is elliptic and can be labelled by an infinite repeating code according to the sequence of
reflections. This situation which we could call ‘piecewise integrable’ is very different from that
corresponding to plane polygonal billiards, which are either integrable (or pseudointegrable) or
ergodic, according to the rationality of their inner angles (see, e.g., [2]). The natural question
we would like to answer in this paper is how this peculiar dynamics is reflected in the statistical
properties of the quantum mechanical spectrum.

There is much evidence, mainly numerical, that integrable dynamics leads to Poisson
statistics while classically chaotic systems satisfy the statistics given by one of the random
matrix ensembles (see, e.g., [3]). Mixed systems show a combination of these extremes that
depends on the relative size of chaotic and regular regions [4]. On the other hand, a different
kind of system, neither regular nor chaotic, has been shown to conform to intermediate statistics:
a simple example is the plane pseudointegrable billiard, which has been studied together with
other models with similar behaviour by Bogomolny et al [5].

The peculiar phase-space structure of equilateral triangles on the sphere led us to believe
that their spectral properties would not conform to any universal statistics. In this paper we
calculate the quantal energy spectrum and the eigenfunctions of these systems. For generic
triangles the calculation will be performed numerically while the spectra of tiling triangles
will be derived analytically just by using symmetry arguments, as was the case in the classical
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counterpart. It was shown in [1] that tiling triangles are very particular systems that not only
are integrable but for which only periodic orbits are present. We will see how this peculiarity
affects the quantal spectrum. In section 2 we present the model and the numerical procedure
to calculate the spectra. Section 3 is devoted to the spectral properties of tiling triangles. In
section 4 we derive the level spacing distributions of several generic triangles and discuss them
in connection with the corresponding classical phase space. Finally, conclusions are presented
in section 5.

2. The model

Given T an equilateral triangle with inner angle ω centred on the north pole of a sphere of
radius R = 1, we are concerned with the eigenvalue problem

�ψE + EψE = 0 in T and ψE = 0 on T (1)

where � is the three-dimensional Laplacian in spherical coordinates θ and φ given by

� = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
(2)

and the eigenvalues E = 2m
h̄

E , E being the energies, are dimensionless.
The wavefunction ψE can be expanded as

ψE =
∑
m

cmF
m(E, cos θ)eimφ (3)

where m is an integer and Fm is a solution of the Legendre equation

∂

∂x
[(1 − x2)F (x)] +

[ −m2

(1 − x2)
+ E

]
F(x) = 0 (4)

with x = cos θ . The functions Fm which have to be regular inside the triangle are then
proportional to the Legendre functions of the first kindPm

ν (x), with real ν such thatE = ν(ν+1)
and real argument −1 < x < 1. These Pm

ν (m �= 0) go to 0 at x = 1, while they diverge for
x = −1.

It will be convenient to define

Fm(E, x) =
√
�(ν − m + 1)

�(ν + m + 1)
Pm
ν (x). (5)

These functions are real for m � ν + 1 and satisfy the following recursion relation:

Fm+2 = −
√

1

(ν + m + 2)(ν − m − 1)
2(m + 1)

x√
1 − x2

Fm+1

−
√

(ν − m)(ν + m + 1)

(ν + m + 2)(ν − m − 1)
Fm (6)

which is used in the numerical procedure to compute the Fm.
In order to obtain a spectrum free from the trivial degeneracies due to symmetry we have to

desymmetrize the billiard. The spherical equilateral triangle is invariant under the point group
C3v and can be cut along the three reflection planes into six triangular subdomains. Solving
the eigenvalue problem in each of these irreducible domains with given boundary conditions
corresponds to finding a fraction of the spectrum of a given symmetry class. In the following
we will treat the Dirichlet problem in the fundamental triangle. This corresponds to solutions
which are odd under reflection across all the symmetry planes. Subspectra corresponding to
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other symmetry classes can be obtained by imposing Neumann and mixed boundary conditions.
In the case we are considering the expansion of equation (3) reduces to

ψE =
∑
p

c3pF
3p(E, cos θ) sin 3pφ (7)

which vanishes automatically at φ = 0 and π
3 .

In order to solve the problem we use an improved version of the ‘point matching’ method
introduced in [6]. This consists in requiring that the Fourier coefficients of the wavefunction
evaluated on the boundary

In =
∫

ds e−2iπns/LψE (8)

should vanish. L is the billiard perimeter and ds the line element. The existence of a non-trivial
solution leads to the condition

det[Jn,m] = 0 with n,m = 1, N (9)

where

Jn,m(E) =
∫

ds e−2iπns/LFm(E, cos θ(s))eimφ(s). (10)

Equation (9) determines the energy levels E.
The numerical calculation was performed for equilateral triangles with inner angle

π
2 � ω � 2π

3 , that is, fairly large triangles for which no difficulties are expected at the
corners. Before presenting these numerical results we analyse in the next section the particular
cases of tiling triangles that can be treated analytically.

3. Tiling triangles

As already described in [1] the classical motion in tiling triangles can be studied by following
a unique geodesic on the topological surface obtained by sewing together a finite number of
replicas of the original billiard. Since the geodesics are closed curves on this compact surface,
all orbits are periodic. In other words, every trajectory in a tiling triangle is restricted to a one-
dimensional subspace. The system is over-integrable, the compactness of the sphere playing
the role of an additional integral. We therefore expect a non-generic behaviour of the level
distribution. The eigenvalues and eigenfunctions of tiling triangles can be evaluated by making
use of symmetry arguments exclusively. Let us consider the equilateral triangle with ω = π

2 ,
that is, a triangle whose vertices coincide with those of a face of an octahedron. Following the
desymmetrization scheme of the previous section we cut the triangle into six triangles with
Dirichlet boundary conditions and calculate the ‘desymmetrized spectrum’. Since the domain
tesselates the sphere the solutions of Legendre’s equation (4) have to be continuous and one-
valued at all points −1 � cos θ � 1. This restricts ν to integer values l and |m| � l. The
eigenfunctions sought will then be linear combinations of spherical harmonics Ym

l that can be
determined by requiring that they should vanish on the boundaries. These boundary conditions
result in a reduction of the spherical symmetry of the problem: the full spherical symmetry
group including all proper and improper rotations in three dimensions will then be reduced to a
point group. For this particular triangle it will be the symmetry group of the octahedron. That
means that in order to determine the eigenvalue spectrum, that is, the allowed values of l and
their degeneracy λl , we should determine how each of the representations of the full spherical
group D±

l may be decomposed into irreducible representations of Oh.
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Table 1. First levels of the spectrum of tiling triangles with ω = π
2 and 2π

3 . The energy of each
level is E = l(l + 1) and its degeneracy λl .

ω = π
2 ω = 2π

3

l λl l λl

9, 13, 15, 17, 19 1 6, 9, 10, 12, 13, 14, 15, 16, 17 1
21 2 18 2
23 1 19, 20 1
25, 27, 29, 31 2 21, 22 2
33 3 23 1
35 2 24, 25, 26, 27, 28, 29 2
37, 39, 41, 43 3 30 3
45 4 31, 32 2
47 3 33, 34 3
49, 51, 53, 55 4 35 2
57 5 36, 37, 38, 39, 40, 41 3
59 4 42 4
61, 63, 65, 67, 69, 71 5 43, 44 3
73 6 45, 46 4

The number of times the αth irreducible representation of the subgroup Oh is contained
in the representation D±

l of the spherical group is given by [7]

cα = 1

gOh

∑
R

χ ∗α (R)χl(R) (11)

where the sum extends over the elements of the group Oh, the order of which is gOh
= 24. The

characters χα(R) can be extracted from the corresponding character table while the characters
for the proper rotations in the full rotation group are given by [7]

χ [D±
l (Rθ )] = sin (l + 1

2 )θ

sin θ
2

. (12)

Here Rθ denotes a rotation through θ about some axis. The character of an improper rotation
(that is, proper rotation multiplied by an inversion) is the same as the character for the proper
rotation for the + representations (that is, for even values of l) and its negative for the − (odd
values of l) representation.

By applying the 24 symmetry operations ofOh it can be easily seen that the eigenfunctions
satisfying Dirichlet conditions in the reduced triangle transform as the one-dimensional
irreducible representation �−

1 of Oh. Therefore the degeneracy λl of the eigenstate of energy
El = l(l + 1) will be the coefficient of the representation �−

1 in the decomposition of D±
l

according to equation (11).
The first levels of the spectrum are shown in table 1 with their corresponding degeneracies.

The eigenfunctions have been obtained by means of diagonalizing the projector of the
representation �−

1 of Oh: they are the eigenfunctions corresponding to eigenvalues equal
to unity. Since the representation is one-dimensional the projector has been expressed in terms
of the characters as

P�−
1

= 1

gOh

∑
R

χ�−
1
(R)D±

l (R). (13)

Again the sum runs over all the elements of the group, and the D-matrices corresponding to
improper rotations are minus those corresponding to proper rotations.
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Figure 1. (a) The level spacing distribution corresponding to the first 20 000 levels of a
desymmetrized plane equilateral triangle. (b) The level spacing distribution for the first 7500
levels of a desymmetrized curved tiling triangle with ω = π

2 .

It is easy to understand that only odd values of l appear in the spectrum of table 1
since the representation �−

1 appears only in the decomposition of D representations with
negative (natural) parity. Furthermore, it can be seen that for l � 13 all odd values of l
are present in the sequence. This means that except for the lowest-lying levels the level
spacing S(l) = El+2 − El is proportional to l. In order to keep constant the classical mean
level spacing S̄, which according to Weyl’s law is S̄ = 4π

A
, A being the area of the reduced

triangle, the level degeneracy λl should also increase linearly with l. The spectrum of the tiling
spherical triangle is thus dominated by number-theoretic degeneracies. These ‘accidental’
degeneracies have been studied by Itzykson and Luck [8]. They appear in some simple
integrable quantum systems, for instance, the harmonic oscillator with rational frequency
ratios (whereEm,n = m+n+1) and the plane integrable polygonal billiards (for the equilateral
triangle Em,n = m2 +n2 −mn). The harmonic potential was extensively investigated by Berry
and Tabor [9]. It is an example of overintegrable systems, in which the additional integrals
are the conmensurability relations. The spacing among adjacent levels is constant while the
degeneracy increases with the energy. This makes the mean level spacing go to zero in the
classical limit and no spacing distribution can be defined. The case of the plane equilateral
triangle presents more analogy with our case as concerns the mean level spacing S̄, which is
well defined and given by Weyl’s formula. Also there the states are increasingly degenerate
and separated by increasingly large gaps.

In order to study the statistics of the nearest-neighbour spacing distribution P(S) we
now unfold the spectrum by defining the sequence el = N̄(El), where N̄(E) is the averaged
integrated level density given by

N̄(E) = A

4π
E − L

4π

√
E + const. (14)
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Figure 2. Energy spectra for a family of equilateral triangles with π
2 � ω � 2π

3 . Full points
indicate the spectra of the tiling triangles. Region I corresponds to the neighbourhood of tiling
triangles, while II and III denote intermediate regions (see text).

L is the triangle perimeter in the spherical metric. The level spacing distribution in the scaled
spectrum P(s), with sl = el+2 − el , is plotted in figure 1(b) for a sequence of 7500 levels.
The distribution is bimodal with a strong tight peak at s = 0 and a flat component, giving
equal probability to all allowed values of sl . Since both degeneracies and gaps diverge with
the energy this distribution is not defined in the classical limit. Asymptotically the peak tends
to a δ-function and the flat mode extends to infinite values of s with a height going to 0. For
comparison in figure 1(a) we show the spacing distribution for a sequence of 20 000 energy
levels corresponding to a desymmetrized plane equilateral triangle with Dirichlet boundary
conditions. Although the distribution looks more Poissonian, as in a generic regular system,
the situation is analogous to that in the curved triangle: as shown in [10] degeneracies and
gaps diverge with energy. However, as pointed out by Berry in [11] for the similar case of the
right plane triangle, this divergence is so slow that this non-generic level structure governed
by number-theoretic degeneracies only appears for very high-lying states. Summarizing, the
spectrum of tiling spherical triangles is non-generic and, although a mean level spacing can
be defined, no spacing distribution P(s) exists in the classical case. This peculiarity is to
be attributed to the number-theoretic structure of the spectrum. The spectra of the spherical
tiling triangles with angles ω = 2π

3 and 2π
5 can be calculated in the same way, by considering

the symmetry group of the tetrahedron and of the icosahedron respectively. The sequence
of eigenvalues corresponding to the desymmetrized triangle with ω = 2π

3 and Dirichlet
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boundary conditions, that transform as the one-dimensional irreducible representation �2 of
Td, is presented in table 1. In this spectrum odd and even values of l are allowed. Except for
the lowest-lying levels all values of l are present, the level spacing S(l) = El+1 − El is again
proportional to l and the spectrum has the general characteristics stated above.

4. Generic triangles

The numerical procedure introduced in section 2 was carried out for curved equilateral triangles
with inner angle ω ranging from π

2 to 2π
3 . We checked the stability of the solutions by varying

the number of points on the boundary used to evaluate the integral in equation (8) and the
number of partial waves in the expansion equation (3). The completeness of each spectrum
was tested by comparing the calculated cumulative level density N(E) with the averaged one
given by the Weyl formula (14). This test is particularly relevant for triangles close to the tiling
ones, for which most of the levels are near degenerate and therefore some of them could be
missed in the numerical calculation.

In figure 2 we show the energy spectra up toE = 2400 for a family of equilateral triangles
labelled by ω. These are plotted as curves Eν(ω). The spectra at the left and right boundaries
correspond to the integrable triangles with ω = π

2 and 2π
3 respectively, which have been

evaluated analytically as described in the previous section. The levels in both sequences are
labelled by an integer l and their multiplicities increase with energy.

All the remaining triangles with arbitrary rational or irrational angle ω are non-integrable
and therefore present no degeneracies in their spectra. Accidental degeneracies are not expected
either: by varying ω, we are moving in a one-parameter family and, according to Berry and
Wilkinson [12] and references therein, variations in one parameter are insufficient to produce
degeneracies. However, in the region denoted as III we observe a great number of quasi-
crossings. Their origin will be explained below.

The level spacing distributions corresponding to the unfolded spectra of six triangles with
ω ranging from π

2 to 2π
3 are shown in figure 1. Between 1300 and 2500 levels were considered

for each case, except for case (d) (ω = 0.589π ) where the huge number of quasidegeneracies
prevented us to go beyond a few hundreds levels. We observe that the distributions depend
drastically on the parameterω and do not exhibit any universal behaviour. In order to understand
the general features of the distributions and their angle dependence we will have to keep in
mind the results for tiling triangles derived in the previous section and also refer to the classical
phase-space plot which is shown for each case in figure 4. As seen in [1] for generic curved
triangles the classical phase space is covered by chains of elliptic islands of regular motion
characterized by an infinite repeating code. The multiplicity of these chains increases and their
size decreases with the period of the code and phase space takes a fractal structure. As shown
in figures 4(a) and (f ), for triangles close to the tiling ones phase space is almost dominated
by one chain of 3 islands (corresponding to the + + + code) in the case ω = π

2 , and by two
chains (corresponding to + + + and +−) in the case of ω = 2π

3 . The region outside these large
domains is entirely covered by ‘dust’, that is by chains of islands corresponding to very long
codes and therefore with extremely high multiplicity and small area. These islands, although
regular and of the same type as the dominant ones, cannot be resolved quantum mechanically
in the region of the spectrum we are analysing. As we go to triangles far apart from the tiling
ones (see figures 4(b)–(e)) other chains of considerable size appear and we will see that some
of them can be resolved in the range of energies considered. In order to see how this is reflected
in the level spacing distributions we now go back to figure 3.

Histogram (a) corresponds to an angleω = 0.511π (region I of figure 2) and can be seen as
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Figure 3. Level spacing distributions for six generic triangles.

a perturbation of the tiling ω = π
2 . The Oh symmetry is broken and the fact that degeneracies

disappear and gaps between levels do not diverge with energy but tend to some finite value
reflects in a modification of the distribution of figure 1(a). The distribution figure 3(a) is still
bimodal but the delta peak at s = 0 is shifted (i.e. there is some level repulsion) and the flat
component does not extend to large values of s. Case (f ) corresponding to ω = 0.649π (also
in region I of figure 2) presents an analogous situation, with a breaking of the Td symmetry,
but in this histogram the low-lying peak is broader (in fact, there is no level repulsion) and
the high s-component shows more structure, suggesting a superposition of two uncorrelated
spectra. In both cases the distributions, and more specifically the presence or absence of
level repulsion, can be better understood by analysing the corresponding eigenfunctions. At a
qualitative level, we expect that eigenstates spanning an integrable region will show rigid and
regularly spaced spectra. Therefore, in the case where a single integrable region dominates
the phase space the spectrum will show repulsion, since all the eigenfunctions are correlated.
In contrast, if several classes of eigenfunctions coexist, the distribution can be thought of as
a superposition of uncorrelated spectra and there will be no level repulsion. In case (a) the
eigenfunctions are of two types: one class lives in the + + + elliptic islands, which mostly fill
the phase space, the other class extends over the region left outside the islands, which is a very
small fraction of the space (see figure 4(a)). Thus, the eigenfunctions of the first class, which
are the majority, will be correlated, leading to the level repulsion observed in figure 3(a). In
case (f ) the eigenfuctions are of three types. Apart from the extended class which lives in the
region left outside the islands, there are two classes of localized functions: one living in the
+ + + elliptic islands, the other in the +− islands (see figure 4(f )). Examples of the Husimi
representation of functions belonging to these three classes are shown in figure 5. The two
classes of localized eigenfunctions living in domains which are comparable in size will be
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Figure 4. Phase-space plots for six generic triangles.

Figure 5. Semiclassical representation of three types of eigenfunction in the triangle with
ω = 0.649π .

weakly correlated: this explains the much weaker level repulsion in distribution of figure 3(f ).
The distributions corresponding to ω = 0.525π and 0.633π are shown in figures 3(b) and

(d) respectively. Both correspond to values of the parameter in region II of figure 2. We are
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now fairly far away from the tiling triangle: the splitting among levels is big, and the two modes
have shifted, yielding a single peaked distribution. As we see in the corresponding classical
phase-space plot figure 4(b) for ω = 0.525π the islands corresponding to codes different from
the dominating + + + are still small and cannot be resolved in the range of energies we are
considering. Still, there are two classes of eigenstates coexisting: those localized in the + + +
domain, and the extended ones, which now occupy a considerable fraction of phase space.
Therefore two classes of weakly correlated eigenfunctions contribute to the spectrum. For
ω = 0.633π three classes of functions are present, since the +− islands are large, as shown in
figure 4(d), and can be resolved.

Summarizing, we can say that the spectra of generic curved triangles are non-universal
and follow a parameter-dependent intermediate statistics. The analysis of the corresponding
classical phase-space plots suggests that the characteristics of the distributions depend on the
number of domains that can be quantum mechanically resolved in a given energy range. The
conjecture is the following. If only one large domain is resolved the eigenfunctions in this
domain are of the same type and, therefore, correlated. If more than one domain can be
resolved, the coupling among states living in different domains will be weak, and the spectrum
will be a superposition of uncorrelated spectra, showing no repulsion.

Another interesting observation is the existence of a high peak at a small value of s in the
level spacing distributions corresponding to triangles in region III of figure 2. Two examples
are shown in figures 3(c) and (d) for angles ω = 0.571π and 0.589π respectively. This peak
is due to the presence of numerous quasi-crossings in this region; the lowest of them are seen
already in figure 2. To understand the origin of these quasi-degeneracies we have to refer
once again to the classical phase-space plots corresponding to these triangles. As pointed out
in [1] generic non-tiling triangles might have domains in which all trajectories are periodic
(coexisting with the families of elliptic islands). For example, in all rational triangles with
ω > π

2 the islands corresponding to the +− code are constituted of periodic orbits. On the
other hand, in triangles with inner angle satisfying

cos
ω

2
=

√
3

4
− cos2

kπ

n
(15)

all orbits of type + + + are periodic with period n.
In region III we find several triangles with rational inner angle or inner angle satisfying

equation (15), corresponding to periodic orbits of relatively short period. For example, in
case (d) ω satisfies equation (15) with period n = 7. Although there is no global symmetry
group, as in the case of tiling triangles, the presence of these periodic domains, which cover
a large fraction of phase space (in particular that corresponding to the + + + code), leads to
quasi-degeneracies among the quantum states localized in these domains. This is the origin
of the huge peak at s = 0 in figure 3(d). Distribution (d) corresponds to an angle close to 4π

7 :
now the periodic orbits are of type +− with period n = 7. Since the area occupied by the +−
islands is smaller, the effect is less pronounced: the peak is lower and located at s small but
different from zero.

5. Conclusions

In this paper we calculated the quantal spectra of generic and tiling equilateral triangles on a
spherical surface. The spectra of the tiling triangles could be obtained analytically by using
symmetry arguments while for the generic ones we performed a numerical calculation based
on an improved version of the ‘point matching’ method, which allowed us to go up to around
2000 levels.
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We found that the spectra of tiling triangles are dominated by arithmetical degeneracies.
This is a property shared by other simple quantum systems, in particular by plane square and
triangular billiards. In the case of curved triangles the distribution of the degeneracies is easily
determined: since the level gap increases linearly with l, that is, it is proportional to

√
E

and the mean level spacing in the classical limit is constant, the degeneracies also increase as√
E. However, the question asked in [8] about relating these degeneracies to some ‘hidden’

symmetry also remains open in this case.
As expected, the spectra of generic triangles of variable inner angle ω show no universal

behaviour in this energy range. We first remarked that for triangles close to the tiling ones the
level spacing distribution is bimodal: this can be seen as a remnant of the level clustering in
the tiling systems. More generally, for an interpretation of the spectral properties we had to
refer to the corresponding classical phase-space plots. These might be governed by one, or
more than one island of considerable size, where considerable means that it can be quantum
mechanically resolved in the energy range under consideration. The conclusions seem to be
the following. If there is only one resolved domain all the eigenfunctions living in this domain
will have support on tori and the corresponding energy levels will be regularly spaced, giving
rise to a rigid spectrum. This is the case in triangles with inner angle ω close to π

2 for which
the + + + islands covers a great area of the phase space ((a) and (b) in figure 4). If several
domains of comparable size coexist different eigenfunctions, which may correspond to levels
close in energy, are localized far apart from each other and are weakly correlated. No level
repulsion will be present in the spectrum.

In order to check these conjectures and to obtain a quantitative understanding of the spectra
we have to extend the calculation to higher energies. The higher we go, the more domains
in phase space will be resolved and an increasing number of weakly correlated families of
eigenfunctions will be present, localized in these domains. It will then be possible to subdivide
the spectrum into subspectra corresponding to each type of eigenfunction (according to their
localization in phase space) and study the characteristics of each subspectrum. This subdivision
is not possible in this paper since we cannot reach values of k for which the small islands will
be explored with significant statistics. To remedy this situation and check whether in the
high-k regime the superposition of many uncorrelated spectra recovers asymptotically the
Poisson behaviour, we are at present adapting the scaling method [13] to the geometry of the
sphere.
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